Four- and Five-Coordinate Platinum(I1) Complexes with Diphenylmethyl- and Phenyldimethyl-stibine

C. A. McAULIFFE, 1. E. NIVEN and R. V. PARISH

Department *of Chemistry, University of Manchester Institute of Science und Technology, Manchester M60 I QD, U.K.* Received February 13, 1975

The ligands SbPh,Me and SbPhMe, form conventional platinum(II) complexes, cis-PtL₂X₂ (X = Cl, Br, I). In addition, the unusual purple five-coordinate complexes PtLJ, are formed in the solid state. These dissociate in solution by loss of ligand $(L = SbPh₂Me)$ *or of iodide (L = SbPhMe,). The presumably fourcoordinate Pt(SbPhMe₂)*4Cl₂ is also reported.

Introduction

Over a decade ago the study of four-coordinate $[Pt(LR₃)₂X₂]$ (L = P, As, Sb) complexes was intense, the main emphasis being placed on thermodynamic and structural factors affecting *cis* and *trans* configurations.' General conclusions were that the *cis* structure is favoured. but that mixtures are frequently difficult to avoid in preparations. It is noticeable that in these studies stibine complexes were investigated to a much less extent than those containing phosphines and arsines.

The present study was stimulated by Westland's $observation²$ that antimony ligands often gave fivecoordinate palladium(I1) and platinum(I1) complexes in solution. rather than the more usual four-coordinate species. Our own observations³ have shown that, even for nickel(I1). the tendency to promote pentacoordination lies in the order $Sb > As > P$. In view of the current interest in the nature of the metal-group VB bond4 and the relative paucity of information on stibine complexes, we report data for new platinum(II)-tertiary stibine complexes.

Experimental

Infrared and proton n.m.r. spectra were obtained on Perkin-Elmer 621 and R10 spectrometers from Nujol mulls and chloroform- d_3 solutions, respectively. Electronic spectra were obtained on a Beckmann DK2 spectrophotometer. Molecular weights were determined in chloroform solution using a Beckmann Mechrolab osmometer.

The following reactions were all carried out under an atmosphere of nitrogen. Analytical and other physical data are contained in Table I, and proton n.m.r. data are listed in Table II. Table III contains the electronic spectral data.

TABLE I. Analytical Data and Physical Properties of Complexes

Compound	Colour	Analyses $(\%)$			M^b	$A_{\rm M}^{\rm a}$ $(Q^{-1}$ cm ² mol ⁻¹)	v_{Pt-X} $\text{(cm}^{-1})$
			Н	X			
$PtCl2(SbPh2Me)2$	yellow	37.1(36.8)	3.4(3.1)	8.2(8.4)		6	310m, 290m
$PtBr2(SbPh2Me)2$	yellow	33.6(33.3)	2.9(2.8)	17.0(17.1)		6	
$PtI_2(SbPh,Me)_2$	orange	30.3(30.3)	2.7(2.5)	24.2(24.6)	810(1031)	9	
PtI ₂ (SbPh,Me) ₃	purple	35.2(35.4)	3.1(3.0)	19.2(19.8)	685(1322)	12	
$PtCl2(SbPhMe2)2$	vellow	26.7(26.6)	3.4(3.1)	10.0(9.8)	699(724)	3	299m, 282s
$PtCl2(SbPhMe2)4$	yellow	32.6(32.5)	3.8(3.8)	5.9(6.0)	528(1182)	10	
$PtBr2(SbPhMe2)2$	yellow	24.0(23.6)	2.9(2.7)	18.9(19.7)		3	210sh, 202m
PtI ₂ (SbPhMe ₂)	orange	21.4(21.2)	2.6(2.4)	27.9(28.0)	844(907)		
$Pt12(SbPhMe2)3$	purple	26.3(25.4)	3.2(2.9)	20.2(22.4)	570(1186)	45	

^a 10⁻⁴M in CH₃NO₂; 1 : 1 electrolytes give values in the range 80–100 Ω^{-1} cm² mol⁻¹ (ref. W. J. Geary, *Coord. Chem. Rev.*, 1971, 7, 81). ^b In CHCl₃.

TABLE II. Chemical Shifts (τ) for Methyl Groups (CDCl₃)^a. magnesium turnings (6.08 g, 0.25 mol) in dry diethyl

SbPh ₂ Me	8.88	SbPhMe ₂	9.19
$PtCl2(SbPh2Me)$,	8.52	$PtCl2(SbPhMe2)2$	8.62
$PtBr2(SbPh2Me)$ ₂	8.49	$PtBr2(SbPhMe2)2$	8.57
$PtI2(SbPh2Me)$,	8.23	$PtI2(SbPhMe2)2$	8.40
$PtI2(SbPh2Me)3$	8.39	$PtI2(SbPhMe2)3$	8.53

^a Internal standard TMS.

TABLE 111. Electronic Spectral Data

	Solution ^a		Reflectance	
	$\nu(kK)$	ε (dm ³ cm^{-1} mol ⁻¹)	$\nu(kK)$	
$PtCl2(SbPh2Me)2$	31.2	2520	24.6	
	$26.8(\text{sh})$	406		
$PtBr2(SbPh2Me)2$	29.8	3480	24.4	
	25.7(sh)	546		
$PtI2(SbPh,Me)$,	$31.9(\text{sh})$	4670	24.3	
	26.2	6930	20.3(_{sh})	
$PtI2(SbPh2Me)3$	$32.2(\text{sh})$	4950	22.7(br)	
	26.2	8510	19.2(br)	
$PtCl2(SbPhMe2)2$	31.6	2340	23.9	
	27.3(_{sh})	376		
$PtCl2(SbPhMe2)4$	32.7(sh)	4430	24.3	
$PtBr2(SbPhMe2)$,	31.6(sh)	3190		
	30.5	3370		
	26.5(sh)	503	24.0	
$PtI_2(SbPhMe_2)$	33.1 (sh)	4240	24.5	
	26.3	5880	21.0(_{sh})	
$PtI_2(SbPhMe_2)$	33.1 (sh)	4840		
	26.7	6560		
	$20.2(\text{sh})$	324	20.7(vbr)	

 $^{\circ}$ Measured in CH₂Cl₂.

The Ligands

Diphenylmethylstihine

Triphenylstibine $(45 g, 0.13 mol)$ was treated with sodium (5.9 g, 0.26 mol) in liquid ammonia (600 $cm³$); addition of ammonium chloride (6.8 g, 0.13 mol) and then iodomethane (17.9 g. 0.13 mol) was subsequently performed.⁵ The ammonia was allowed to boil off and a saturated solution of ammonium chloride (300 $cm³$) and ether (200 $cm³$) were added with stirring. After separation the organic layer was dried over anhydrous sodium sulphate and the ether stripped off. The pure ligand was obtained by distillation under reduced pressure (b.p. 141-145°C at 2.4 mmHg).

Phenyldimethylstibine

A solution of methylmagnesium iodide, obtained by reaction of iodomethane (35.5 g. 0.25 mol) with ether (100 cm^3) , was slowly added to a solution of phenyldichlorostibine (27.0 g, 0.1 mol) in dry dicthyl ether (500 cm"). After stirring for I hr the mixture was hydrolysed with deoxygenated ammonium chloride solution (500 cm^3) . The organic layer was separated. dried over anhydrous sodium sulphate and the solvent removed by distillation. The ligand was obtained by distillation at $34-36^{\circ}$ C at 0.2 mmHg.

The Complexes

$PtL₂X₂$ ($L = SbPh₂Me$, $SbPhMe₂$; $X = Cl$, Br)

An ethereal solution (10 cm^3) of the ligand (4 mmol) was added dropwise with stirring to an ethanolic solution (30 cm^3) of potassium tetrachloroplatinate(II) $(0.83 \text{ g}, 2 \text{ mmol})$. After stirring for 4 hr the mixture was filtered, washed with water. ethanol, and ether, and recrystallised from ethanol/dichloromethane. The bromo complexes were prepared similarly in the presence of an excess of KBr.

$Pt(SbPh₂Me)₂l₂$

An acetone solution (100 cm³) of $Pt(SbPh₂Me)₂Cl₂$ (1.25 g. 1.17 mmol) was refluxed for 3 hr with lithium iodide (I.5 g, 11.2 mmol). The hot solution was filtered and evaporated to one-third bulk, ethanol (30 cm") was added. and the solution evaporated until crystals began to form. These were filtered and washed with ether.

$Pt(SbPh₂Me)₃I₂$

This was prepared as for $PtL₂X₂$ using a metal :ligand ratio of 1 :3.S and an excess of lithium iodide. The precipitated solid was washed with water and recrystallised from the minimum amount of dichloromethane/ethanol. Excess of solvent facilitates some dissociation into the planar bis-ligand complex.

$Pt(SbPhMe₂)₃l₂$

This was prepared as for $PtL₂X₂$ using a metal: ligand ratio of 1:3 and an excess of lithium iodide. The solid was washed with water and recrystallised from the minimum amount of dichloromethane/ethanol in the presence of excess added ligand.

$Pt(SbPhMe₂)₂l₂$

On dissolving $Pt(SbPhMe₂)₃I₂$ in excess chloroform and precipitating with ether orange crystals were deposited. These were filtered, washed with ethanol and recrystallised from dichloromethane/ethanol.

Pt(SbPhMeJ,Cl,

On treating $PhMe₂Sb$ (2.0 mmol) with an aqueous solution (50 cm³) of potassium tetrachloroplatinate (0.5 mmol) a yellow solid formed. This was soluble in ether and was crystallised from ether.

Results and Discussion

$PtL_2X_2 (L = SbPh_2Me, SbPhMe_2; X = Cl, Br, I)$

These four-coordinate complexes are light in colour and are thus probably the cis isomers; 6 certainly ν (Pt-Cl) frequencies are of the right order of magnitude for *cis* complexes.^{7,8} The electronic spectra (Figures 1-3) are quite typical of platinum (II) complexes; and the spectra of the chloro-complexes indicate planar coordination.' However, the iodo-complexes

exhibit a low-energy absorption at ca. 20 000 cm^{-1} in the solid state which is not present in the solution spectrum, and absorptions in this region are characteristic of pentacoordinate platinum (II) ;¹⁰ this suggests that the iodo-complexes are weakly associated in the solid state. presumably by iodine bridges. In dichloromethane the iodo-complexes are planar (Figures 2, 3).

In 10^{-4} *M* solution in nitromethane these complexes are very slight conductors, indicating some ionisation of coordinated halide. Moreover. the molecular weights of these complexes (Table I) in chloroform are consistent with about a 10% ionisation, indicating an equilibrium of the type

$$
[PtL_2X_2] \longrightarrow [PtL_2X \cdot solvent]^+ X^-
$$

The n.m.r. spectra show single resonances for the ligand methyl groups, as expected; coupling with the platinum nucleus (¹⁹⁵Pt, $I = \frac{1}{2}$, 33%) is presumably lost through quadrupole relaxation by antimony (^{121}Sb) , $I = 5/2, 57.28\%$. The resonances shift slightly to lower field with increasing atomic mass of the halide, as found in other systems.¹¹

$P_{1L_3I_2}(L = SbPh_2Me, SbPhMe_2)$

These complexes are obtained by using a metal : ligand ratio greater than $1:3$ in the preparations. This is particularly important for the $Pt(SbPhMe₂)₃I₂$ complex, which is not isolable unless an excess of the ligand is present in solution. Both complexes are purple, in marked contrast to the yellow-orange bis-ligand complexes.

The strongest absorption in the solid state electronic spectra is ca . 20 000 cm^{-1} strongly suggesting a pentacoordinate formulation of the type $[PtL₃I₂]$. However, the behaviour of the two complexes in solution show fascinating and striking differences.

The $[Pt(SbPh₂Me)₃I₂]$ complex dissolves in dichloromethane and its electronic spectrum exhibits an intense absorption almost identical in energy to that of $[Pt(SbPh₂Me)₂I₂].$ Moreover the molecular weight of this complex in chloroform $(\sim 10^{-3} M)$ is in excellent agreement with the dissociation

$$
[Pt(SbPh2Me)3I2] \longrightarrow [Pt(SbPh2Me)2I2] +
$$
 SbPh₂Me

(calculated for $[Pt(SbPh₂Me)₂I₂] + SbPh₂Me 662$, found 685).

However, the absorption maximum of [Pt(SbPh $Me₂$, I₂] in dichloromethane is shifted significantly to higher energy relative to that of $[Pt(SbPhMe₂)₂I₂].$ Thus, while the complex is obviously tetracoordinate in solution (Figure 3) it does not give the bis-ligand complex. The obvious alternative is

 $[Pt(SbPhMe₂)₃I₂] \longrightarrow [Pt(SbPhMe₂)₃I]⁺ I⁻$

(molecular weight: calculated for $[Pt(SbPhMe₂)₃I]I.$ 568, found 570). In $10^{-4}M$ nitromethane this complex is also highly dissociated ($A_M = 45$ cm² Ω^{-1} mol⁻¹). The formation of a tris-ligand complex is consistent with the smaller steric interactions expected of SbPh $Me₂$ than SbPh₂Me.

N.m.r. spectra were obtained on saturated chloroform solutions which showed the purple colour of the solid complexes, indicating little or no dissociation under these conditions. Consistently, both spectra show only single resonances for the methyl groups and neither shows the signals of the free ligand. The chemical shifts are significantly different from those of the bis-ligand complexes.

$Pt(SbPhMe₂)₄Cl₂$

This complex is four-coordinate in the solid state, as evidenced by the strong absorption at ca . 25 000 cm^{-1} in the reflectance spectrum (Figure 1). The absence of any $v(Pt-C)$ vibrations in Nujol mull suggests a $[Pt(SbPhMe₂)₄]Cl₂$ formulation, but this complex is a non-conductor in nitromethane. It is no doubt significant that the tetrakis-ligand complex is formed with the smaller ligand, but the exact nature of this complex must await further investigation.

Conclusion

The ligands SbPh₂Me and SbPhMe₂ form conventional cis bis-ligand complexes with platinum (II) . However, both ligands give unusual, purple. five-coordinate di-iodo complexes, Pt12L,. On both electronic **and** steric grounds these complexes are unexpected. Although both dissociate in solution. albeit in different ways, there can be no doubt that in the solid complexes the coordination number of platinum is greater than four. We are currently investigating a wider range of such complexes.

Acknowledgement

The award of an S.R.C. studentship to I.E.N. is gratefully acknowledged.

References

- 1 "Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands", ed. C.A. McAuliffe, Macmillan and Co., London, 1973.
- 2 A.D. Westland, J. Chem. Soc., 3060 (1965).
- 3 W. Levason and C.A. McAuliffe. Inorg. Chim. Acta, 11, 33 (1974).
- 4 See Chapter by A. Pidcock in ref. 1.
- 5 S. Sato, Y. Matsumura and R. Okawara, J. Organomet. Chem., 43, 333 (1972).
- 6 G. Booth. Adv. Inorg. Chem. Radiochem., 6, 1 (1964).
- 7 D.M. Adams, J. Chatt, J. Gerratt and A.D. Westland. J. Chem. Soc., 734 (1964).
- 8 R.J. Goodfellow, J.G. Evans, P.L. Goggin and D.A. Duddell. J. Chem Soc. (A), 1604 (1968).
- 9 W. Levason and C.A. McAuliffe. Inorg. Chem., 13, 2765 (1974) .
- 10 G. Dyer, G.J. Hartley and L.M. Venanzi, J. Chem. Soc., 1293 (1965).
- 11 D.A. Duddell, J.G. Evans, P.L. Goggin, R.J. Goodfellow, A.J. Rest and J.G. Smith, J. Chem. Soc. (A), 2134 (1969).